

Channel Encoding & Decoding Viterbi Algorithm

Stefan Kroll Martin Schober

Christoph Kaiser Peter Mödlhammer

Roland Ortner Hannes Graf

Channel Encoding & Decoding

- 1. Digital Communication System
- 2. Viterbi Algorithm
- 3. Advantages of the Viterbi Algorithm
- 4. Presentation of a Demonstration Software

- Historical background of viterbi-coding
- Parts of a digital communication system
- Use of the Viterbi algorithm

- Problem of digital communitaation
 - Transmit much data via a noisy channel
 - Detect and correct errors

- Solution
 - Convolutional coding with
 - Forward error correction (FER)

Viterbi Algorithm

The Viterbi-Algorithm is a basic part of the coding and modulation method of the digital data transmission.

With the help of the Viterbi-algorithm it is possible to recognise data errors and correct them at the receiver. [9]

Viterbi Algorithm

"...efficient methode of optimum sequence estimation of a finite-state process".

"finding the shortest path through a weighted graph"

Development

< 1955

- -Block codes
- -Linear block codes

1955

Elias P. introduced

- Convolutional codes
- Fixed decoding time
- First real-time coding

Development

1967

Andrew J. Viterbi

- -Founder of Qualcomm Corporation
- -Developed the Viterbi Algorithm

• • •

Other researchers improved the channel coding methodes

- Found new convolutional codes
- Improved the performance limits
- Designed implementations in hard- & software

Development

1995

Viterbi & Reed-Solomon decoding

- Used in space communication
- geostationary satellite communication

Channel coding: Code Types

Code Types:

- Block coding
- Convolutional coding

1. Block coding

- Input:
 - Large message blocks with CRC
- Output:
 - Block code with different length and breaks

1. Block coding

Reed-Solomon Block:

Viterbi-coded block + CRC-block

188 bytes 16 byte

 Recognition and correction of 8 errorbytes

2. Convolutional Coding

- Input:
 - Serial data stream with includes redundant information
- Output:
 - Decoded binary data stream

Use of the Viterbi Algorithm

- Radio link
- Satellite connection
- Digital TV (MPEG-2/DVB)
- Geostationary satellite networks (VSAT)
- Speech recognition
- Magnetic recoring
- Direct broadcast satellite systems (DBS)

2. Description of the Algorithmus

- Convolutional encoder
- Parameters
- Channel symbols mapping
- Noise adding
- Channel symbol quantizing
- Viterbi Decoding

Generation of the data

needed for simulation

- eg. using a random number genarator
 - eg. rand (); in C
 - value less than half of the maximum value is a zero
 - any value grater or equal to half of the maximum value is a one

Convolutional encoder

Convolutional encoder

Parameters

• eg. k=3

- represent the code generator polynomials
- eg. m=2
 - number of shift-register
- eg.R=1/2
 - code rate (one inputbit → two outputbits)

Channel symbols mapping

• Is simply a matter of translating:

- zeros to +1
- ones to -1

method is called living zero

This can be accomplished by performing the operation: y = 1-2x

Noise adding

generating Gaussian random numbers

 adding the scaled Gaussian random numbers to the channel symbols values

Channel symbol quantizing

• Soft-decision

Hard-descision

quantized to one-bit precision

- < 0V = 1
- > 0V = 0

Soft-decision

- three or four bits of precision can perform about 2 dB better than harddecision
- the usual quantization precision is three bits

3 Bit Quantizer

Viterbi Decoding

• Diagrams help to understand the algorithm

- State diagram
- Trellis diagram

State diagram / Trellis diagram

Trellis diagram

Viterbi decoding 1

Viterbi decoding 2

Trellis diagram

current	next	sended bit
00	00	0
00	10	1
10	01	0
10	11	1
01	00	0
01	10	1
11	01	0
11	11	1

3. Advantages of the Viterbi Algorithm

- Minimization of the Bandwidth
- Other Advantages

Self-Correction of the Code

 very good ability to correct wrong transmitted bits ⇒ forward error correction

- done by adding of a redundant information
- state diagram offers a complete description of the system

Self-Correction of the Code

State diagram

Minimization of the Transmitting Energy

ullet BER Simulation Results for Rate 1/2 Convolutional Coding with Viterbi Decoding on an AWGN Channel with Various Convolutional Code Constraint Lengths

Minimization of the Transmitting Energy

• good designed satellite transmissions: BER< 10⁻⁶

- professional transmissions: BER < 10⁻¹⁰
- transmitting power: 4 Watt

Minimization of the Bandwidth

 possible to reconstruct lost data ⇒ used to save bandwidth

- more bandwidth needed, because of all the redundant information
- rate $1/2 \Rightarrow$ double of the bandwidth
- don't send every third bit ⇒ able to reconstruct the dropped data

Minimization of the Bandwidth

called puncturing of the code

• disadvantage: the transmitting energy have to been increased

Other Advantages

- high transfer rate, up to 2 Mbps
- implementation in hardware and software

4. Presentation of the Software

- constraint length: 7
- code rate: 1/2
- soft decision: 3 bit quantizer

Viterbi Algorithm

Thank You for Your Attention!